Corona/COVID-19 Übertragung, Verlauf: Luftverschmutzung u. Feinstaub
(DPA)

Corona/COVID-19 Übertragung, Verlauf: Luftverschmutzung u. Feinstaub

Zu Beginn der Ausbreitung von Covid-19 waren die beiden Regionen in Italien mit der höchsten Sterblichkeit die Regionen mit der höchsten Luftverschmutzung. Ein Großteil der Bevölkerung in Städten ist einer Luftverschmutzung über dem Grenzwert ausgesetzt.

Luftverschmutzung

Luftverschmutzung beeinträchtigt die Umwelt und die menschliche Gesundheit. In den letzten Jahren ist die Zahl der Stoffe, die die Luft verschmutzen, zurückgegangen, was zur Verbesserung der Luftqualität in Europa beigetragen hat. Leider ist die Luftverschmutzung immer noch zu hoch, vor allem in städtischen Gebieten, wo die Emissionen viel höher sind. Das Überschreiten kritischer Werte für Stoffe wie Ozon, Kohlendioxid und Feinstaub ist lebensbedrohlich. Luftverschmutzung ist nicht nur ein Problem für das Land, aus dem sie emittiert wurde, sondern auch ein globales Problem, denn sobald sie in die Atmosphäre gelangt, kann sie eine Verschlechterung der Luftqualität in anderen Ländern verursachen.

Ozon, Kohlendioxid und Feinstaub sind die häufigsten Luftschadstoffe und gelten als gesundheitsgefährdend. Die meisten Feinstaubpartikel werden durch Abrieb von Bremsbelägen, Reifen und Kupplungen verursacht. Die langfristigen Auswirkungen dieser Stoffe auf den menschlichen Körper können zu Gesundheitsproblemen, wie z.B. Erkrankungen der Atemwege, und zum vorzeitigen Tod führen. Bei weniger Feinstaub ist die Zahl der Todesfälle viel geringer. Die wissenschaftliche Forschung berichtet, dass es einen Zusammenhang zwischen Partikeln und Lungenentzündung gibt. In beiden Fällen, d.h. bei kurzer und langer Exposition gegenüber suspendierter Flüssigkeit, wurde eine höhere Anzahl von Fällen von Krankenhausbehandlung beobachtet. Bei Kindern verursacht Feinstaub Allergien und Mittelohrentzündungen. Eine weitere schädliche Substanz ist Benzopyren, ein Karzinogen, das in vielen Gebieten Europas, insbesondere in Mittel- und Osteuropa, über dem Schwellenwert liegt.

Feinstaub

Ein Feinstaub ist ein kleines und fast unsichtbares Feststoffteilchen. Sie werden in drei Klassen eingeteilt:

  • Partikel mit 10 Mikrometer Durchmesser (PM10)
  • Partikel mit einem Durchmesser von weniger als 2,5 Mikrometern (PM2,5)
  • Partikel mit einem Durchmesser von 1 Mikrometer oder weniger (PM0,1).
    Sekundäre Feinstaubpartikel entstehen im Zusammenhang mit Stoffen und Gasen, z.B. Ammoniak, die mit den Abgasen von Strassenverkehr und Industrie reagieren. Auch Stickstoffdioxid wird als Vorläufer von Feinstaub (Sekundärpartikel) gezählt.
    Feinstaub entsteht in Kraftwerken, Feuerungsanlagen, Heizsystemen und Verbrennungsprozessen. In Städten trägt der Verkehr zur Bildung großer Mengen von Feinstaub bei, wobei hier der Reifenverschleiß und die Abnutzung von Autoreifen eine größere Rolle spielen als die Abgase. In der Landwirtschaft entsteht bei der Ausbringung von Gülle auf die Felder Ammoniak als Dünger, der mit den Schwefeloxiden und dem Stickstoff in der Luft reagiert.
    Es ist wissenschaftlich erwiesen, dass Feinstaub für die menschliche Gesundheit schädlich ist. Manchmal reichern sich gefährliche Verbindungen wie Schwermetalle oder Aluminium, die krebserregend wirken, auf der Oberfläche der Partikel an. Feinstaub an sich ist ebenfalls lebensbedrohlich. Das Risiko steigt, wenn die Partikel klein sind. Sie dringen dann tiefer in die Atemwege ein und gelangen über die Lungenbläschen sogar in die Blutbahn. Dies führt zu einer Konzentration des Blutes im Körper und zum Auftreten von Infarkten. Sie tragen auch zu kleinen Schlaganfällen bei, die durch ihr Eindringen in das Gehirn verursacht werden.
    Dies wird durch Studien der Weltgesundheitsorganisation (WHO) und der US-Umweltschutzbehörde (EPA) bestätigt. Sie haben viele epidemiologische Studien über die Auswirkungen von Feinstaub und seine Folgen für die menschliche Gesundheit durchgeführt. Die Ergebnisse waren schlüssig und zeigten, dass selbst eine kurzzeitige Exposition gegenüber Feinstaub der Klasse II (PM2,5) die Sterblichkeitsrate beeinflusst und die Situation von Menschen mit Atemwegs- und Kreislaufproblemen verschlechtert. Ähnliche Ergebnisse wurden bei Studien über Feinstaub der Klassen eins und drei erzielt. Das langfristige Vorhandensein dieser Partikel hat zu ähnlichen Ergebnissen geführt.

Zu Beginn der Ausbreitung von Covid-19 in Italien beobachteten Wissenschaftler, dass die beiden Regionen in Italien mit der höchsten Sterblichkeit und den höchsten Virusinfektionen die Regionen mit der höchsten Luftverschmutzung waren. Orte, an denen die Luft verschmutzt ist, haben so genannte Hotspots, an denen die Herde größer ist. In Italien ist die Zahl der mit dem Virus infizierten Menschen doppelt so hoch wie in anderen europäischen Ländern und auch in China. US-Wissenschaftler führten ein Experiment durch, um die Auswirkungen der Luftverschmutzung auf die Sterblichkeit von Covid 19 zu untersuchen. In ihren in der Vorveröffentlichung beschriebenen Ergebnissen stellten sie fest, dass bereits ein Mikrogramm mehr Partikel pro Kubikmeter Luft die Sterblichkeit um durchschnittlich 8% erhöht. Zu ähnlichen Ergebnissen kamen Forscher der Universität Halle-Wittenberg, als sie die von Covid-19 betroffenen Regionen in Europa analysierten.
Studien berichten, dass Feinstaub als Träger des Virus gilt. Dies zeigt zum Beispiel die Auswertung der Europäischen Umweltagentur. Sie stellten fest, dass der Wert von PM10 die europäischen Grenzwerte und die von der WHO festgelegten Werte überschreitet. Mit der Festlegung von Grenzwerten sollten verschiedene Gesundheitsgefährdungen ausgeschlossen werden. Wissenschaftler aus den USA und Deutschland befassen sich auch mit dem Feinstaub und der durch Autoabgase verursachten doppelten Oxidation von Stickstoff. Dies hat in diesen Ländern zu einem Fahrverbot für Autos mit Diesel als Kraftstoff geführt. Die Wissenschaftler kommen zu dem Schluss, dass selbst ein geringer Anstieg der Menge dieser Gase in der Luft den Krankheitsverlauf von Menschen, die an Covid-19 erkrankt sind, beeinflussen kann.
Die Tatsache, dass Luftverschmutzung Atemwegsinfektionen beeinflusst, ist nichts Neues. Dies wurde in einer vor vielen Jahren durchgeführten Studie über SARS-CoV deutlich. Dabei wurden zwei Regionen in Asien verglichen. Die eine war mit mäßiger und die andere mit hoher Luftverschmutzung. Es zeigte sich, dass das Sterberisiko in einer Region mit mässiger Luftverschmutzung 86% höher und doppelt so hoch war. Es ist wahrscheinlich, dass im Fall der Grippeepidemie von 1918/1919 die Luftverschmutzung auch die Ausbreitung des Grippevirus beeinflusst hat.

Luftqualität und Corona

Wissenschaftlerinnen und Wissenschaftler aus den USA und Deutschland haben zahlreiche Studien durchgeführt und kommen zu ähnlichen Ergebnissen. Sie kommen zu dem Schluss, dass die Verschlechterung der Luftqualität als Indikator für die Häufigkeit des Auftretens schwerer Fälle herangezogen werden kann. Damit könnte die Frage beantwortet werden, warum junge Menschen ernste Symptome zeigen, wenn sie mit dem Virus infiziert sind. Statistiken zeigen, dass Luftverschmutzung und Lungenentzündung in Deutschland höher sind als in Italien, so dass Luftverschmutzung allein nicht die einzige Ursache zu sein scheint. Auch andere Faktoren spielen bei der Erkrankung eine Rolle, aber Statistiken zeigen, dass Atembeschwerden und Lungenentzündungen bei Kindern durch teuren Staub verstärkt werden. Allerdings infizieren sich Kinder selten mit dem Covid-19-Virus oder zeigen Symptome davon.
Einige der Studien sehen jedoch keinen Zusammenhang zwischen Covid-19 und Feinstaub. Eine interessante Tatsache ist, dass die Patienten nie daraufhin untersucht wurden, ob sie Raucher sind. Rauchen ist einer von vielen Faktoren, die Atemwegsprobleme und Lungenentzündung beeinflussen, oder derselbe wie Covid-19. Rauchen erhöht das Risiko von Herz-Kreislauf-Erkrankungen, was als eine bedeutende und gefährliche Erkrankung angesehen wird, die bei Covid-19 besteht.
Andere Gründe mögen für die Ausbreitung des Virus wichtiger sein, aber ohne echte wissenschaftliche Forschung werden viele Faktoren vorerst übersehen werden. In Norditalien zum Beispiel altert die Bevölkerung und es gibt Gesundheitsprobleme. In diesem Fall kann selbst ein kleines Bekenntnis die Ausbreitung der Krankheit beeinflussen. Hinzu kommt, dass ältere Menschen hauptsächlich bei ihren Familien leben, so dass sich die Krankheit schneller ausbreiten kann, auch wenn die Ängstlichen nicht nach draußen gehen und die Jungen es tun.

Wissenschaftler behaupten, dass „Luftverschmutzung für Covid-19 nicht unbedeutend ist“, aber sie betrachten es nicht nur als direkten Träger des Virus, sondern gehen auch davon aus, dass sich die Risikofaktoren, die eine Virusinfektion beeinflussen, summieren können. Menschen mit Atemwegs- und Herz-Kreislauf-Erkrankungen haben bei hoher Luftverschmutzung mit größerer Wahrscheinlichkeit einen schwereren Krankheitsverlauf. Wissenschaftler liefern noch keine genauen Daten über die Auswirkungen einer Kontamination auf das Herz-Kreislauf-System. Feinstaub kann nur einer von vielen Faktoren sein, die die Ausbreitung des Virus beeinflussen. Wissenschaftler gehen davon aus, dass auch die Übertragung durch den Menschen wichtig sein könnte. Es ist noch ungewiss, ob die Infektion über die Luft übertragen werden kann und ob neue Viren über eine Entfernung von mehreren Kilometern ansteckend sein können. Es gibt immer noch keine genauen wissenschaftlichen Studien darüber, ob die Luftverschmutzung mit der Verbreitung von Covid-19 zusammenhängt.
Die Wissenschaftler benötigen mehr Daten, und viele Fragen sind noch unbeantwortet. Wissenschaftliche Forschung zeigt nur verlässliche statistische Korrelationen auf. Ob die Luftverschmutzung tatsächlich die Ursache von Covid-19 ist, kann derzeit nicht eindeutig beantwortet werden. Es gibt viele Theorien, Hypothesen und erste Ergebnisse, die Wissenschaftler zur Charakterisierung des aktuellen Virus verwenden. Je mehr sie über die Eigenschaften des Virus wissen, desto besser können in Zukunft vorbeugende Massnahmen getroffen werden, um eine neue Pandemie zu vermeiden.

Weiterlesen

Corona-Gefahr in Innenräumen: Aerosole und COVID_19

Mittlerweile gilt als bekannt, dass sich das COVID-19-Virus in Innenräumen schnell verbreiten kann. Als Grund gelten in der Luft vorhandene Partikel: Aerosole.

Was sind Aerosole?

Aerosole sind ein kolloidales Gemisch aus flüssigen oder festen Partikeln, die in der Atmosphäre schweben. Diese schwebenden Partikel können auch als Aerosolpartikel oder Aerosolpartikel bezeichnet werden. Sie machen einen kleinen Teil der atmosphärischen Masse aus, haben aber einen erheblichen Einfluss auf das Klima und die Biogeochemie. Die Aerosolpartikel können nicht nur die atmosphärische Strahlung verändern, sondern auch die Eigenschaften der Wolken beeinflussen. Wegen der Bedeutung von Aerosolen für das Klima, die Biogeochemie und die menschliche Gesundheit werden Aerosolpartikel seit vielen Jahren untersucht.

Klassifizierungskriterien von Aerosolen sind: Größe, Herkunft, Entstehungsart, chemische Zusammensetzung, optisch-physikalische Eigenschaften und Wirkung im Klimasystem.

Die Größe der Aerosole ist die wichtigste Eigenschaft. Das Größenspektrum der Aerosole reicht von Molekülen mit einem Durchmesser von weniger als einem Nanometer bis hin zu großen und sichtbaren Bakterien, Algen, Pflanzenteilen, Pollen, Staubkörnern und Niederschlag. Atmosphärische Aerosole können Veränderungen unterworfen sein, z.B. Koagulation von kleinen Molekülen zu großen Molekülen, Verdampfung von flüssigen Bestandteilen der Moleküle oder Kondensation von gasförmigen Bestandteilen der Moleküle.

Es wird auch zwischen primären und sekundären Aerosolen klassifiziert. Primäre Aerosole befinden sich direkt in der Luft, z.B. Meersalz und Staub. Zu den Aerosolpartikeln, die von Menschen und Tieren stammen, gehören : Haar- oder Hautabfälle, Brochosomen und Eier, die von Insekten in die Atmosphäre emittiert werden. Tabelle 1 zeigt Arten von primären Aerosolpartikeln mit Beispielen von Mikroorganismen.

Arten von primärer AerosolpartikelnBeispiel
Biologische Organismen oder Ausbreitungseinheiten (lebendig oder tot, aggregiert oder isoliert)Bakterien, Algen, Pilze, Protozoen, Sporen, Pollen, Flechten, Archaeen, Viren usw.
Feste Fragmente, Asscheidungen von biologischen Organismen oder AusbereitungseinheitenDetritus, mikrobielle Fragmente, Pflanzenreste/Laub, Tier Gewebe und Exkremente und Brochosomen usw.
Tabelle 1. Charakteristische Arten von primärer Aerosolpartikeln.
Weiterlesen

Nachhaltiges Bauen: Ökologisch, ökonomisch und sozial

Der Begriff „Nachhaltigkeit“ stammt aus der Forstwirtschaft und ist bereits 300 Jahre alt. Durch übermäßige Rodung kam es zu einer Verknappung der Ressource Holz. Nachhaltiges Handeln im damaligen Sinne war also ein Gleichgewicht zwischen Rodung und Nachwachsen der Bäume zu finden und herzustellen, um weiterhin Holz als Ressource zur Verfügung zu haben.

Unser heutiges Verständnis von Nachhaltigkeit wurde hauptsächlich von dem 1987 veröffentlichten Brundtland-Bericht der Weltkommission für Umwelt und Entwicklung der Vereinten Nationen geprägt. In diesem Bericht wird unter nachhaltigem Handeln verstanden, die Bedürfnisse der derzeitigen Generationen zu befriedigt, ohne zukünftigen Generationen die Lebensgrundlage zu nehmen oder ihre Möglichkeiten ihren Lebensstil frei zu wählen einzuschränken. 

Die Enquete-Kommission des Bundestages entwickelte 1998 das drei Säulen Modell der Nachhaltigkeit, nachdem zur nachhaltigen Entwicklung gleichzeitig und gleichwertig ökologische, ökonomische und soziale Aspekte berücksichtigt werden müssen.

Die Ziele des nachhaltigen Bauens können aus diesen Dimensionen der Nachhaltigkeit abgeleitet werden: Nachhaltigkeit verbindet Ökologie mit ökonomischen Zielstellungen und sozialen Aspekten.

Ökologische Dimension

Im Bereich der ökologischen Dimension ist das Ziel die Minimierung der Umweltbelastungen auf lokaler und globaler Ebene. Es werden alle Stoff- und Energieströme von der Gewinnung der Rohstoffe für die Baumaterialien bis zum Rückbau des Gebäudes betrachtet. In allen Lebensphasen soll der Verbrauch von Energie und Wasser minimiert, Ressourcen geschont sowie der Einsatz von Baumaterialien optimiert werden. 

Weiterlesen

Wasserstoff: Grüner Energieträger der Zukunft?

Heizungen, Autos, Raketen – all diese Dinge brauchen Energie, und bei allen kann dazu als nachhaltiger Energieträger Wasserstoff Verwendung finden. Die Forschung um erneuerbare Energien ist aktuell und allgegenwärtig, doch was genau sind die Vorteile von Wasserstoff und wie kann er genutzt werden?

Wasserstoff (chemisches Symbol: H) wurde 1766 vom englischen Chemiker und Physiker Henry Cavendish entdeckt. Lavoisier, der dieses Gas weiter untersuchte, nannte es „hydro-gène“, was so viel bedeutet wie „wassererzeugend“. Das liegt daran, dass Wasser zusammen mit Sauerstoff schnell zu Wasser reagiert, was in der Chemie auch als Wasserstoff-Nachweis mithilfe der sogenannten Knallgasprobe genutzt wird.

Mehr Artikel/Informationen lesen

Wasserstoff – Eigenschaften

Es ist das leichteste aller Elemente und mehr als zehnmal leichter als Luft. Normalerweise ist es gasförmig und farb-, geschmack- und geruchlos. Der übliche Wasserstoff setzt sich aus einem Proton und einem Elektron zusammen, allerdings gibt es zwei weitere Isotope, die zusätzlich jeweils ein bzw. zwei Neutronen enthalten. Deuterium wird auch schwerer Wasserstoff genannt und hat ein Neutron im Kern, ist aber, genau wie der häufigste Wasserstoffisotop, der „normale“ Wasserstoff, stabil. Tritium, der sogenannte überschwere Wasserstoff mit zwei zusätzlichen Neutronen, hingegen, ist instabil. Aus diesem Grund zerfällt Tritium und strahlt dabei radioaktive Strahlung ab.

Im Universum ist Wasser das am häufigsten vorkommende chemische Element, was es auch sehr geeignet zur nachhaltigen Energieerzeugung macht. Allerdings liegt Wasser auf der Erde nie in elementarer Form, sondern nur gebunden vor: es bildet das Wasserstoffmolekül H2 und kommt in der Atmosphäre meistens an Sauerstoff gebunden als Wasser (H2O) oder zusammen mit Kohlenstoff als Methan (CH4). Sowohl Wasser als auch Methan kommen auf der Erde sehr häufig in verschiedenen Formen vor. Außerdem enthalten die meisten organischen Verbindungen (das sind Verbindungen, die Kohlenstoff beinhalten, wie z.B. Zellulose, Zucker, Öle, Fette und viele andere) Wasserstoff.

Gewinnung

Aufgrund der Eigenschaft , nur gebunden vorzuliegen, muss er jedoch zur energetischen Nutzung zunächst von seinen ursprünglichen Molekülen abgespalten werden, denn er kann eben nur aus diesen gewonnen werden.

Eine Methode, die auch zur Herstellung von grünem Wasserstoff mithilfe von erneuerbaren Energien angewandt werden kann, ist die Elektrolyse von Wasser. Dieses Verfahren besteht schon fast so lange, wie man den Wasserstoff überhaupt entdeckt hat. Dabei wird das Wasser durch das Anschließen von Strom in seine Bestandteile zerlegt. Weil andere Methoden wirtschaftlich sinnvoller sind, wird die Elektrolyse zur Herstellung von Wasserstoff in der Industrie meistens nur dann genutzt, wenn dafür regenerative Energien zur Verfügung stehen. Der so gewonnene Wasserstoff wird auch grüner Wasserstoff genannt, weil dabei keine Treibhausgase entstehen, keine fossilen Energieträger verbraucht und keine Atomenergie benötigt wird.

Sogenannter grauer Wasserstoff entsteht aus fossilen Brennstoffen. Bei der am häufigsten genutzten Methode, der Dampfreformierung, wird Erdgas bei hoher Hitze in CO2 und Wasserstoff umgewandelt. Da das hierbei entstehende CO2 sich ungenutzt mit der Luft in der Atmosphäre vermischt, verschlimmert diese Methode allerdings den Treibhauseffekt und ist deshalb nicht besonders umweltfreundlich. Weil sie aber billiger ist als die Elektrolyse von Wasser, wird sie bisher hauptsächlich angewendet.

Eine weitere umweltschonende Methode zur Herstellung von Wasserstoff sind Grünalgen. Sie produzieren diesen auf natürliche Weise mithilfe von biologischen Mechanismen. Die für die Herstellung von Wasserstoff benötigte Energie ziehen die Algen sich aus der Sonnenstrahlung. Dieses Verfahren ist ökologisch sehr sinnvoll. In diesem Bereich wird fleißig geforscht. Genau wie auch Grünalgen, können auch Blaualgen Wasserstoff herstellen. Ingenieur.de berichtet, dass es Forschern aus Israel gelungen ist, Blaualgen genetisch so verändern, dass sie ihre Wasserstoffproduktion deutlich erhöht haben. Normalerweise produzieren diese Bakterien kaum mehr Wasserstoff, sobald Sauerstoff vorhanden ist, was sie für die industrielle Wasserstoffproduktion eher ungeeignet mache. Es sei allerdings gelungen, die Herstellung von Wasserstoff auch unter Sauerstoffzufuhr zu vervierfachen. Zusätzlich werde nun versucht, das für die Wasserstoffproduktion verantwortliche Enzym der Blaualgen, die Hydrogenase, synthetisch herzustellen. Es wird erhofft, durch eine erhöhte Konzentration dieser Enzyme in Blaualgen Wasserstoff in industriellem Maßstab produzieren zu können.

Verwendung

Wasserstoff kann auf unterschiedliche Arten verwendet werden.

Einerseits können damit synthetische Gase hergestellt werden, die zum Beispiel Erdgas ersetzen.

Andererseits wird in Brennstoffzellen Wasserstoff in Wärme und Strom umgewandelt. Brennstoffzellen bestehen aus einem galvanischen Element, das die Elektrolyse von Wasser sozusagen umkehrt. Der Soff wird in durch eine Membran getrennten Räumen zur Reaktion gebracht, wobei die chemische Energie in Form von elektrischem Strom und Wärme frei wird.

Auf diese Weise werden seit den 1960er Jahren Raketen angetrieben. Auch Zeppeline wurden mit Brennstoffzellen angetrieben. Nach dem Unglück der Hindenburg, bei dem sich der leicht entzündliche Wasserstoff durch den Absturz entzündete, war Wasserstoff aber wegen seiner Explosivität nicht mehr so beliebt. Davon abgesehen gibt es Wasserstoff-Autos, bei denen die Brennstoffzelle für den Strom sorgt, den der Elektromotor benötigt. Sie tanken regelmäßig Wasserstoff auf. Auch Brennstoffzellenheizungen verbreiten sich immer mehr. In Japan wurden bereits ganze Gebäudekomplexe damit ausgestattet.

Wasserstoff – Nachhaltigkeit

Grundsätzlich ist Wasserstoff ökologisch nachhaltiger als alternative Energiequellen und -träger wie Erdöl, Erdgas oder Energie, die durch Kernspaltung gewonnen werden. Denn er ist in vielen verschiedenen organischen und anorganischen Verbindungen in der Atmosphäre und auch im restlichen Universum reichlich vorhanden und wird, anders als beispielsweise Erdgas, bei der Verbrennung nicht verbraucht. Natürlich bleiben die einzelnen Atome des Ausgangsstoffs immer erhalten, allerdings kann aus dem bei der Verbrennung von Wasserstoff entstehenden Wasser beispielsweise durch Elektrolyse wieder Wasserstoff gewonnen werden, während bei der Verbrennung von Erdgas unter anderem CO2 entsteht. Das ist nicht nur schädlich für die Atmosphäre, sondern bedeutet auch, dass aus den Verbrennungsprodukten nicht so einfach wieder das ursprüngliche Erdgas synthetisiert werden kann. Zusätzlich entstehen bei der Verbrennung von Wasserstoff keinerlei Emissionen, was seine Verwendung besonders umweltfreundlich macht.

Allerdings ist Wasserstoff keine primäre Energiequelle, wie zum Beispiel Erdöl, sondern lediglich ein Energieträger. Würde er in elementarer Form auf der Erde vorliegen, könnte er direkt zur Energieerzeugung verwendet werden, aber da er zunächst von anderen Molekülen abgespaltet werden muss, dient er nur als Energieträger. Denn er transportiert u.a. die Energie, die verwendet wurde, um ihn herzustellen. So kommt es in Bezug auf die Nachhaltigkeit von Wasserstoff nicht nur auf die Wirksamkeit bei der direkten Anwendung, sondern auch auf die Art der Herstellung an. Wurde Wasserstoff mithilfe von Atomenergie gewonnen, liegt er in puncto erneuerbare Energien nicht besonders weit vorne, auch wenn er für ein Wasserstoffauto benutzt wird. Ganz anders sieht es allerdings aus, wenn Wasserstoff durch regenerative Energien gewonnen wird. Dieser grüne Wasserstoff wird besonders gefördert und wie auch eine Strategie des Bundeskabinetts zeigt, soll Deutschland in Zukunft zu den Ländern gehören, die weltweit am meisten klimafreundliche Wasserstoff-Energie nutzen. Dazu wäre es optimal, mit Sonnen- und Windkraftanlagen so viel Strom zu erzeugen, dass damit wirtschaftlich nachhaltig Wasserstoff produziert und für andere Anwendungen weiterverwendet werden kann.

Insgesamt ist Wasserstoff ein guter Energieträger, der andere Energieträger wie Erdgas oder Erdöl ersetzen könnte, wenn er ausreichend effizient produziert wird. Die Frage, wie nachhaltig und grün Wasserstoff als Energieträger ist, lässt sich aber nicht pauschal beantworten und ist vor allem davon abhängig, wie er hergestellt wird. Alte Verfahren wie die Elektrolyse und neue Verfahren wie die biologische Wasserstoffproduktion mithilfe von Grün- und Blaualgen haben noch viel Potenzial und könnten dabei ihren Beitrag zu einer grüneren Energiebereitstellung leisten.

Mehr Informationen/Artikel lesen

Weiterlesen

Bürobegrünung: Raumbegrünung für ein gesundes Raumklima

Bürobegrünung ist wichtig. Heutzutage ist es üblich, dass die meisten Menschen ihre Arbeitszeit in Innenräumen und vor allem in Büros verbringen. Diese sind mit allem ausgestattet, was zum Arbeiten benötigt wird, bieten allerdings oftmals zu wenig im Hinblick auf Wohlbefinden und Raumklima.

Alwe – Das Algenbild

Trockene, stickige Luft, eine eintönige, gräuliche Farbgestaltung und damit verbundene Konzentrationsprobleme: Müdigkeit, trockene Augen und Schleimhäute oder sogar Schwindelgefühle. Dank neuer biologischer und arbeitspsychologischer Erkenntnisse kann all dem jedoch inzwischen entgegengewirkt werden. Dazu kann neben Beleuchtungskonzepten die Begrünung von Büros einen wichtigen, nicht zu unterschätzenden, Beitrag leisten. Denn Gesundheit und Wohlbefinden werden zusätzlich zu Licht, Lärmbelastung oder Geruch besonders vom Raumklima, der Farbgestaltung und der Schadstoffkonzentration in der Luft beeinflusst. Mithilfe von Bürobegrünung können diese letzten drei Aspekte auf vergleichsweise einfache Art und Weise verbessert werden.

Bürobegrünung genügt verschiedenen Ansprüchen

Bürobegrünung ist vielfältiger, als oftmals angenommen wird. Sie muss nicht unbedingt aus pflegeleichten Topfpflanzen bestehen, die ständig gegossen werden müssen und nicht unbedingt besonders ästhetisch sind. Denn unter Bezeichnungen wie intelligente Bürobegrünung, Climate Office oder Office 4.0 wird Bürobegrünung in verschiedenen Designs und Arrangements und mit unterschiedlichen Pflegeansprüchen an die Ansprüche des jeweiligen Umfelds angepasst. Dafür werden Zimmerpflanzen, exotische Pflanzen, Hydropflanzen und auch Textilpflanzen oft als Topfpflanzen verwendet. Aber auch Pflanzenbilder und sogar ganze Pflanzenwände sind erhältlich und bringen Abwechslung in das Gesamtbild der Bürobegrünung. Für die optische Aufwertung von Büros sind all diese Varianten gut geeignet, während für ein besseres Raumklima besonders Hydrokulturen ideal sind. Diese wachsen, wie der Name bereits andeutet, nicht in Erde, sondern ausschließlich in Wasser. So sind sie sehr hygienisch, da sie kaum Schädlinge oder Mikroorganismen beherbergen, welche bei Topfpflanzen hauptsächlich in der Erde vorkommen. Aus diesem Grund ist es in Krankenhäusern sogar vorgeschrieben, zur Begrünung Hydrokulturen zu verwenden. Für Büros sind Hydrokulturen ebenfalls gut geeignet, da sie längere Bewässerungsintervalle zulassen. Somit sind sie auch für vielbeschäftigte Menschen pflegeleicht.

Es gibt also viele verschiedene Möglichkeiten, Bürobegrünung umzusetzen, wobei diese je nach gewünschter Wirkung und nach möglichem Pflegeaufwand ausgewählt werden. Aber wie genau kann sich ein grünes Büro positiv auswirken?

In Büroumfeldern, in denen direkter Kundenkontakt oder zumindest Kontakt mit anderen Firmen oder Geschäftspartnern herrscht, ist der offensichtlichste Vorteil eines mit Pflanzen dekorierten Büros die positive Außenwirkung. Grüne Pflanzen setzen im ansonsten farblich eher neutral gehaltenen Büro natürliche Akzente, die das Gesamtbild auflockern und auf subtile Weise sofort für eine entspannende, angenehme Raumatmosphäre sorgen.

Bürobegrünung – Grün für das Wohlbefinden

Sicherlich ist das auch eine Frage des persönlichen Geschmacks, allerdings kann die Atmosphäre in Räumen mit Bürobegrünung instinktiv positiver wahrgenommen wird.

Abgesehen von Kunden, Patienten oder anderen Besuchern, wirkt sich die ästhetische Verbesserung des Raumes auch besonders auf die Mitarbeiter aus. Da diese sich tagtäglich wesentlich länger in ihren begrünten Büros oder Zimmern aufhalten als eventuelle Besucher, können die Mitarbeiter am stärksten und langfristigsten von den Vorteilen der Bürobegrünung profitieren.

Neben der tatsächlichen gesundheitlichen und raumklimatischen Verbesserungen , der Staubreduktion , der Schallreduktion  und des Schadstoffabbaus  bei einer durchschnittlichen Bürobegrünung der Großteil der entstehenden Besserungen im Bereich des psychischen Wohlbefindens liegen, wozu beispielsweise Wohlfühlen, Mitarbeitermotivation und Zufriedenheit zählen. Das liegt unter anderem daran, dass Menschen erwiesenermaßen das Bedürfnis nach Grün haben. Ob das nun in unseren Genen liegt, weil unsere Vorfahren mitten in der Wildnis zwischen unzähligen Pflanzen gelebt haben, und ob Grün sich für uns natürlicherweise nach Zuhause anfühlt, kann vermutlich niemand so genau sagen. Fest steht aber, dass viele Menschen sich im Wald wohl, entspannt und frei fühlen und wir uns irgendwie entschleunigt fühlen, wenn wir Begrünung um uns haben.

So auch im Büro – natürlich ganz geordnet und nicht mit einem Wald zu vergleichen, aber die Wirkung ist ähnlich: Menschen, die in einem begrünten Arbeitsumfeld arbeiten, zeigen demnach ein gesteigertes Wohlbefinden und fühlen sich weniger gestresst. Sie nehmen ihr Umfeld als angenehmer und lebendiger wahr und können sich besser konzentrieren oder auch kreativen Aufgaben nachgehen. Besonders Menschen, die bei der Arbeit viel Zeit vor dem Bildschirm verbringen, fühlen sich durch mehr Grün am Arbeitsplatz energiegeladener und empfinden ihre Arbeitszeit als angenehmer als in einem Büro in neutralen Farben und ohne Pflanzen.

Dazu trägt auch das durch die Pflanzen verbesserte Raumklima bei. Zum einen sorgt Raumbegrünung für eine bessere Luftfeuchtigkeit. Diese erreicht in Innenräumen aufgrund von Klimaanlagen, trockener Heizungsluft oder schlechten Lüftungsanlagen so gut wie nie den optimalen Wert von 40 bis 55 Prozent, was bei längerem oder regelmäßigem Aufenthalt zu gesundheitlichen Problemen führen kann. Zusammen mit dem verminderten CO2- bzw. verbesserten Sauerstoff-Gehalt der Luft führt Bürobegrünung somit zu weniger Müdigkeit, weniger Trockenheit im Hals, weniger Husten und zu weniger trockener oder gereizter Haut bei Mitarbeitern. Auch trockene oder müde Augen werden durch eine erhöhte Luftfeuchtigkeit vermieden und es wird Virusinfektionen vorgebeugt. Zusätzlich sorgt die erhöhte Luftfeuchtigkeit für eine besseren Schutz von Feinstaub, der in diesem Zustand weniger schädlich ist für Lungen ist.

Die Bürobegrünung wirkt also indirekt als Staub- und Schadstofffilter. Durch das somit entstehende gesündere Raumklima fühlen sich Menschen in begrünten Räumen deutlich wohler und können kreativer und produktiver arbeiten. In Büros steigt die Mitarbeiterzufriedenheit und auch das körperliche Wohlbefinden. Auf lange Sicht hat Bürobegrünung dadurch das Potenzial, den Krankenstand in Firmen zu vermindern.

Weil Bürobegrünung für weniger Müdigkeit und ein verringertes Auftreten von trockenen Schleimhäuten und Augen sorgt und Virusinfektionen vorbeugen kann, und auch langfristig für eine bessere Gesundheit und erhöhtes Wohlbefinden sorgt, wird sie von den Krankenkassen, der Berufsgenossenschaft, sowie der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin befürwortet.

Was sind Ihre persönlichen Erfahrungen mit Bürobegrünung? Schreiben sie uns.

Alwe – Das Algenbild

Weiterlesen
Ansteckungsgefahr durch Aerosole in Räumen
Bürobegrünung zur Miete

Ansteckungsgefahr durch Aerosole in Räumen



Aerosole sind winzige, in der Luft schwebende Partikel, die kleiner als fünf Mikrometer sind. Daraus resultiert ihre Eigenschaft längere Zeit mit Gasen transportiert werden zu können. Aerosole setzen sich im oberen Bereich der Atemwege zum Beispiel beim Ausatmen, Husten, Sprechen oder Singen an den Stimmlippen im Kehlkopf fest. An ihnen können Viruspartikel haften und bei Einatmung Virusinfektionen auslösen. Beim Einatmen können sie auch in die tiefen Teile der Lunge gelangen.

Aktuelle Forschung

Das Robert-Koch-Institut und die American National Academy of Sciences der USA bestätigen Studien, welche „darauf hinweisen, dass Sars-CoV-2-Viren über Aerosole auch im gesellschaftlichen Umgang in besonderen Situationen übertragen werden können.“ Wie häufig sich Menschen über diesen Weg infizieren, ist aber noch nicht geklärt und muss in Studien weiter untersucht werden.
In einer Studie im New England Journal of Medicine bewerteten amerikanische Wissenschaftler die Stabilität von SARS-CoV-2 in Aerosolen. Ihre Ergebnisse deuten darauf hin, dass die Übertragung von SARS-CoV-2 durch Aerosole plausibel ist, da das Virus in Aerosolen über Stunden lebensfähig und infektiös bleiben kann.
Bei dieser Studie wurden Aerosole (50% Gewebekultur-Infektionsdosis [TCID50] pro Milliliter) enthalten, unter Verwendung eines dreistrahligen Collison-Verneblers erzeugt und in ein Goldberg-Fass geleitet. Das Inokulum ergab Zyklus-Schwellenwerte zwischen 20 und 22, ähnlich wie sie bei Proben aus dem oberen und unteren Atemtrakt des Menschen beobachtet wurden.

Besondere Gefahr in Räumen


Vor allem in geschlossenen Räumen, wie Wohn und Büroräumen können hohe Konzentrationen an Aerosolen entstehen. Die Belatung der Innenluft in Räumen ist wichtig, da Menschen in Deutschland einen Großteil ihrer Zeit in Innenräumen, Zuhause oder im Büro, verbringen.

Weitere Informationen zum Thema Luftverschmutzung

Weiterlesen

Inhalts-Ende

Es existieren keine weiteren Seiten

Menü schließen
de_DE
en_GB de_DE